
Vorlesungsmanuskript Version 9.0, ab WS 1999 / 00

Heiner Dörner, Dipl. –Ing. Fakultät Luft- und Raumfahrttechnik Universität Stuttgart Hauptdiplomstudium

Verwendung des Manuskripts, auch auszugsweise, nur mit Genehmigung des Verfassers

INSTITUT FÜR
FLUGZEUGBAU

UNIVERSITÄT STUTTGART

1

1999

Windenergie - Potential

Die Bewegung der Atmosphäre wird durch Zufuhr von Strahlungsenergie der Sonne aufrechterhalten. Windenergie ist demnach eine sekundäre Form der Sonnenergie. Die Größe der Bewegungsenergie die in allen Windströmungen enthalten ist, kann über Langzeitmessungen von Bodenund Höhenwinden sowie Zuggeschwindigkeiten von Wetterfronten abgeschätzt werden. Ebenso kann man Grenzschichtmodelle mit variabler Bodenrauhigkeit zur Berechnung heranziehen.

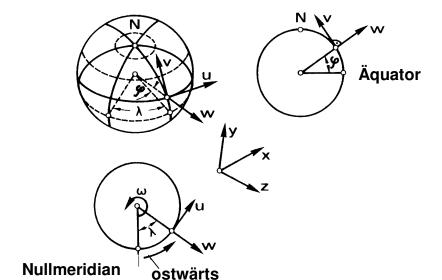
Überlegungen dieser Art haben ergeben, daß 1,5 bis 2,5 % der auf die Erde eingestrahlten Sonnenenergie (1,5·10⁹ TWh/Jahr) ständig in Strömungsenergie der Atmosphäre umgewandelt werden. Das sind 2,3 bis 3,8 · 10⁷ TWh/Jahr oder eine mittlere Leistung von 2,6 bis 4,3 ·10 ³ Terrawatt.

Bis zu 3% dieser Energie, das sind 6,9 bis 11,4·10⁵ TWh, könnten global durch Windenergie-Konverter aus der Atmosphäre entnommen werden. Dies entspricht einer mittleren Leistung von 130 Terrawatt.

Es wurde ermittelt, daß ungefähr die Eintages - Strahlungsenergie der Sonne ständig in der Atmosphäre als kinetische Energie gespeichert ist. Das bedeutet, daß ohne Einstrahlung der Sonne, die Atmosphäre der Erde, betrachtet als riesiges Schwungrad, innerhalb von weniger als 10 Tagen vollständig zur Ruhe kommen würde. Bezogen auf die gesamte Erdoberfläche steht somit ständig eine Leistung von ca. 0.25 Watt/m² zur Verfügung.

In Westeuropa ergeben sich im Mittel pro Jahr 6,2·10³ Terrawattstunden. Das ist etwa das Fünffache der in den letzten Jahren umgesetzten, elektrischen Energie. Hätte man in der Bundesrepublik Deutschland den elektrischen Endenergiebedarf aller Haushalte für ein repräsentativ Jahr der neunziger Jahre bereitstellen wollen, so wären dazu mindestens 20 000 Großanlagen des historischen GROWIAN-Typs notwendig gewesen. Flächenmäßig wäre diese Zahl allein auf der Fläche von Schleswig-Holstein unterzubringen. Die genannte Zahl stellt allerdings eine reine Energiemengenbetrachtung dar.

Berücksichtigt sind dabei nur Luftschichten, in die man aus technischen Gründen mit Großanlagen, wie dem genannten GROWIAN gelangen kann. Der Jahresertrag dieser Einzelanlage bewegt sich zwischen 8 und 12 GWh. Die Anlagen würden dabei in der voll turbulenten Grenzschicht stehen die bis zu 300 m Höhe dick ist. Der Grad der Turbulenz wird von der Bebauung am Boden, d. h. generell von der "Bodenrauhigkeit" (natürliche oder künstliche Hindernisse) abhängen.


Heute kann man Serienanlagen kaufen die sich den Dimensionen des alten GROWIAN nähern. Diese 3-flügeligen Windkraftanlagen erreichen 70 m Durchmesser und haben eine installierte Leistung von 1,5 bis 2 MW. (GROWIAN Ø 100 m, 3MW).

Im Vergleich zu anderen, regenerativen Energiequellen schneidet die Windenergie global gesehen enorm günstig ab. Ähnlich wie bei der Nutzung der Solarenergie werden jedoch flächenmäßig große Anlagen benötigt, da auch die Quelle Wind ein "energiedünnes " Medium darstellt.

Freifahrende Turbinen - Windenergie

1999

1a

Definition von Atmosphärenkoordinaten und Geschwindigkeitskomponenten von Luftteilchen am Globus

Bewegungsgleichungen

$$\frac{d\mathbf{u}}{d\mathbf{t}} - 2\,\omega\,(\mathbf{v} \cdot \sin\varphi - \mathbf{w} \cdot \cos\varphi) + \frac{1}{\varrho} \cdot \frac{\partial \mathbf{p}}{\partial \mathbf{x}} - \frac{\eta}{\varrho} \cdot \left(\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{z}^2}\right) = 0$$

$$\frac{d\mathbf{v}}{d\mathbf{t}} + 2\,\omega\,\mathbf{u} \cdot \sin\varphi + \frac{1}{\varrho} \cdot \frac{\partial \mathbf{p}}{\partial \mathbf{y}} - \frac{\eta}{\varrho} \cdot \left(\frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{y}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{z}^2}\right) = 0$$

$$\frac{d\mathbf{w}}{d\mathbf{t}} - 2\,\omega\,\mathbf{u} \cdot \cos\varphi + \mathbf{g} + \frac{1}{\varrho} \cdot \frac{\partial \mathbf{p}}{\partial \mathbf{z}} - \frac{\eta}{\varrho} \cdot \left(\frac{\partial^2 \mathbf{w}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{w}}{\partial \mathbf{y}^2} + \frac{\partial^2 \mathbf{w}}{\partial \mathbf{z}^2}\right) = 0$$

u, v, w sind Komponenten des Geschwindigkeitsvektors s mit den Lagekoordinaten

 $x=r~\lambda,~y=r~\phi,~z=r+h.~\lambda$ ist die geographische Länge, ϕ die geographische Breite, r der mittlere Erdradius und h die Höhe über der mittleren Erdoberfläche. ω ist die Winkelgeschwindigkeit der Erdrotation, p der lokale Luftdruck, $\eta=\eta~(\vartheta)$ die dynamische Zähigkeit der Luft und $\rho=\rho~(p,~\vartheta)~$ die Luftdichte.

Die allgemeine Betrachtung führt zu einigen Sonderfällen der Bewegung von Luftkörpern.

Alle Luftbewegungen in freier Atmosphäre sind instationär. Die räumliche Temperaturverteilung weist Unstetigkeiten auf. Die Temperaturänderung vertikal bewegter Luftmassen erfolgt isentrop.

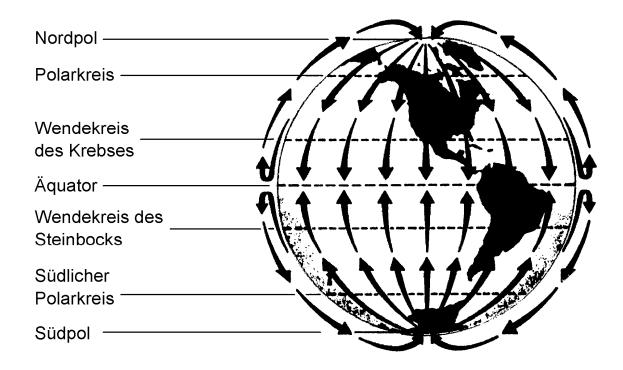
In der untersten Luftschicht, der Troposphäre, herrscht labile Schichtung vor. Kleine Störungen ergeben vertikale Luftbewegungen, *Auf- und Abwinde*.

Der geostrophische Wind ist die Bewegung von Luftteilchen in Höhen, die von der Bodenreibung unbeeinflußt sind (ab ca. 1000 Meter Höhe). Die Bewegung erfolgt tangential zu den gerade oder schwach gekrümmt verlaufenden Isobaren.

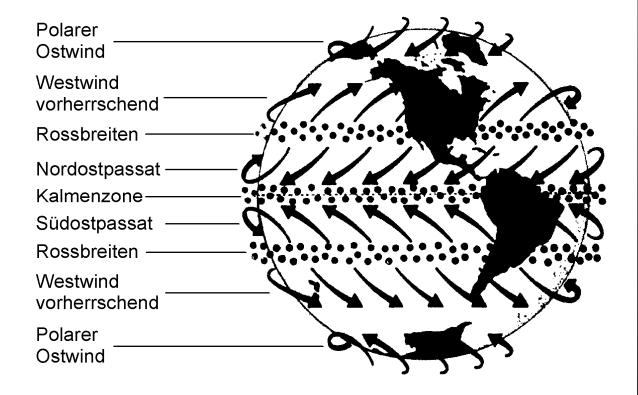
Bei stationärer Luftbewegung auf Bahnen mit annähernd konstanter, starker Krümmung wird ds/dt \approx s²/R. Reibungsglieder dürfen vernachlässigt werden. Dies ist der sogenannte *Gradientwind*.

Die an bestimmte Tageszeiten gebundene Land- und Seewinde sowie Bergund Talwinde sind sogenannte antitriptische Winde.

Bei Durchzug von Kaltluftfronten tritt der zyklostrophische oder EULER-Wind mit hohen Windgeschwindigkeitswerten auf.


INSTITUT FÜR
FLUGZEUGBAU

1999


2

UNIVERSITÄT STUTTGART

Besondere, globale Windströmungen

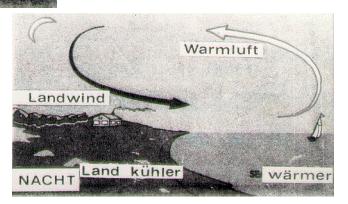
Entwicklung der Windströmung ohne Erdrotation

INSTITUT FÜR	Ereifebrande Turbinen Windenergie	1999
FLUGZEUGBAU UNIVERSITÄT STUTTGART	Freifahrende Turbinen - Windenergie	2
Entwicklung der	Windströmung mit Erdrotation	

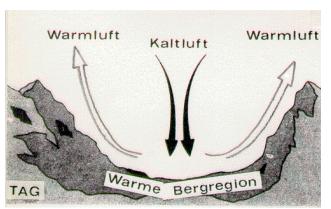
UNIVERSITÄT STUTTGART

Freifahrende Turbinen - Windenergie

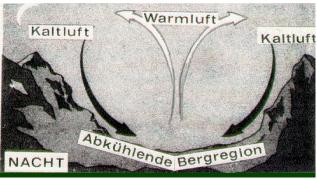
1999


3

Warmluft


Kühle Meeresluft

Land wärmer Meer kühler


Entstehung von Landwind und Seewind

Antitriptische Winde

Entstehung von Bergwind und Talwind

INSTITUT FÜR
FLUGZEUGBAU

Freifahrende Turbinen - Windenergie

1999

4

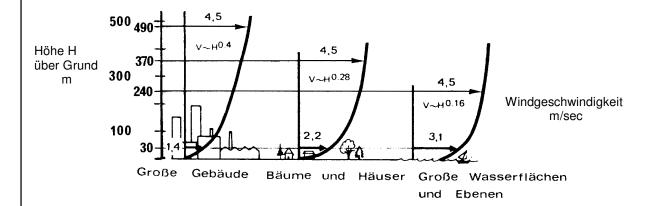
Verlauf der Windgeschwindigkeit über Grund

Die Zunahme der Windgeschwindigkeit über dem Erdboden hat idealisiert betrachtet einen parabolischen Verlauf. Es existieren zwei Verfahren zur näherungsweisen Berechnung der Windgeschwindigkeit über Grund.

1. Methode
$$V_H = V_{10} \cdot (H / 10)^a$$

Der Exponent a ist für 3 typische Bodenkonfigurationen näherungsweise angegeben. V_{10} ist die Windgeschwindigkeit in der international festgelegten Meßhöhe von 10 Metern über Grund. Die gewünschte Höhe H wird in Metern eingesetzt.

a = 0,16 für glatte, ebene Flächen (Meer, unmittelbare Küstennähe)


a = 0,28 für nieder bewachsene, ebene Flächen (Küstenhinterland)

a = 0,40 für Grenzschichten z.B. über Städten mit hohen, künstlichen Hindernissen

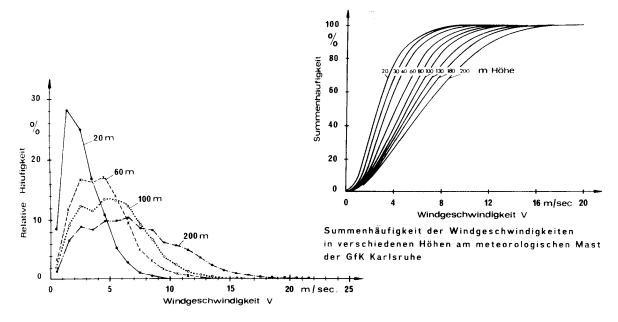
Beispiele: Quickborn a = 0,20

Hamburg a = 0,23

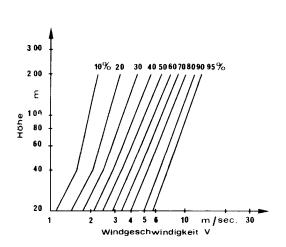
Karlsruhe a = 0.35

1999

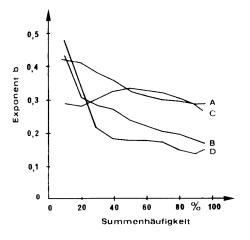
UNIVERSITÄT STUTTGART


5

2. Methode


Es werden nicht einzelne Geschwindigkeiten, sondern Summenhäufigkeitslinien umgerechnet. Man bezieht sich auf eine bestimmte, prozentuale Summenhäufigkeit (Häufigkeitslinie), z.B.:

$$V_{H,20\%} = V_{10,20\%} \cdot (H / 10)^{b}$$


Es werden meist 10 Exponenten b ermittelt. Für jeden Summenhäufigkeitswert nimmt V nach einem Potenzgesetz zu, wobei steigende Summenhäufigkeit steilere Kurven ergibt, d.h. kleinere Exponenten b.

Absolute Häufigkeit der Windgeschwindigkeiten in verschiedenen Höhen am meteorologischen Mast der GfK Karlsruhe

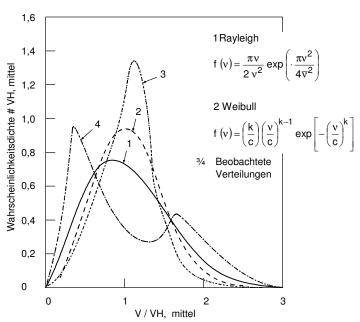
Abhängigkeit der Windgeschwindigkeiten für die verschiedenen Summenhäufigkeiten von der Höhe

Abhängigkeit des Exponenten b der Höhenumrechnung von der Summenhäufigkeit

- A Hamburg Funkturm
- B Hamburg Flugplatz
- C Karlsruhe Kernforschungszentrum
- D Quickborn

Freifahrende Turbinen - Windenergie

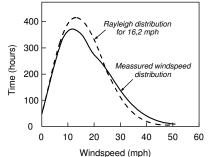
1999

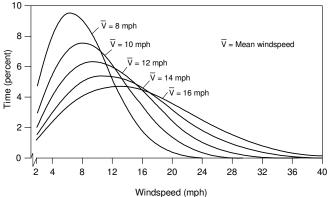

5a

UNIVERSITÄT STUTTGART

Aus der Mathematik sind Wahrscheinlichkeits-Dichte-Funktionen bekannt die sich zur näherungsweisen Bestimmung von ortsspezifischen Windgeschwindigkeitshäufigkeitsverteilungen eignen.

Zur statistischen Beschreibung der Verteilung der Windgeschwindigkeiten wird z.B. die Weibull-Funktion benützt. 2 Form-Einstell-Parameter c und k sind dabei variabel. Für k=2 erhält man den Spezialfall der Rayleigh-Verteilung.


Aus den unten gezeigten Diagrammen (englisch beschriftet) wird die breite Variationsmöglichkeit der Form der Häufigkeitskurven ersichtlich. Der Bodenrauhigkeitseinfluß und der Höheneinfluß auf die Häufigkeitsverteilung der Windgeschwindigkeiten für spezielle Aufstellungsorte kann somit mathematisch berücksichtigt und vorhergesagt werden.


The Rayleigh distribution takes the following from:

Hours=8,760 x
$$\frac{1}{2}$$
 x $\frac{1}{\sqrt{V^2}}$ x e $\frac{1}{V^2}$ where V = windspeed
6 = mean windspeed
p = 3,1416
e = 2,718
$$k = \frac{\pi}{4} x \left(\frac{V}{V}\right)^2$$

This equation gives you the total number of hours per year you can expect the wind to blow at a windspeed'/ when the mean windspeed is 6 at that site.

Comparsion of Rayleigh and measured windspeed distributions for St. Ann's Head, England.

The Rayleigh distribution versus windspeed for sites with mean windspeeds between 8 and 16 mph

INSTITUT FÜR
FLUGZEUGBAU

Freifahrende Turbinen - Windenergie

1999

6

Turbulenz

Moderne, sinnvolle und technisch machbare Windenergie-Konverter werden immer in einer voll turbulenten Grenzschicht (Mindestdicke 300 bis 500 m) stehen. Die Schwingzeit der Turbulenz reicht von

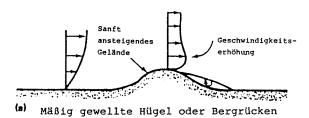
- a) wenigen Sekundenbruchteilen von kleingliedrigen Turbulenzballen (Einfluß auf: Lastannahmen der Einzelanlage, Energieverteilung über Rotorfläche)
- b) einigen Sekunden bis Minuten, Dimension einige 100 Meter(Gewitterwolken und -walzen, Strömungsumkehr), (Einfluß auf: Gruppenaufstellung, Anlagen-Farmen, Energieausbeute der einzelnen Anlage in der Gruppe)

bis hin zu

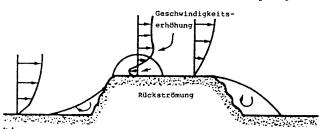
c) Tages- und Wochenintervallen, Großwetterlagen (Einfluß auf: Mehrere Anlagen -Farmen mit einigen 100 km Abstand im Verbund, Speicherfragen)

Standortfragen und Empfehlungen

- 1. Windmessungen an Ort und Stelle; Extrapolation von nahegelegenen Wetterstationen für die Energieaussage mit großen Fehlern behaftet
 - a) kontinuierlicher Schrieb
 - b) Stundenmittel (8760 Werte/Jahr, Ermittlung 10 Minuten lang vor dem Meßzeitpunkt)
 - c) Synoptische Einzelwertmessung (alle 3 oder 6 Stunden)
 - d) Windmessungen 1 Jahr um jahreszeitliche Schwankungen zu erfassen (10-Jahresrythmus von windschwachen/windstarken Jahren ist bekannt)
- 2. Beurteilung der Umgebung, Topographie, Bebauung, Abschätzung der Höhenzunahme der Windgeschwindigkeit, Entscheidung über Turmhöhe
- 3. Spacing (Rasteraufstellung) bei Windenergie Konverter Farmen, Hauptwindrichtung beachten, 10 - 15 Rotordurchmesser Windlauflänge zur Stömungsauffrischung durch turbulenten Ausgleich aus energiereicheren, höheren Luftschichten

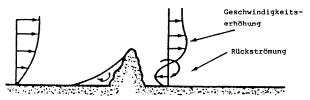

INSTITUT FÜR
FLUGZEUGBAU

Freifahrende Turbinen - Windenergie


1999

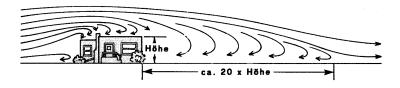
7

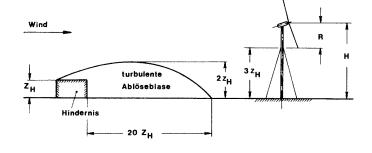
Standortfragen



(geeignete Standorte)

(b) Hügel oder Bergrücken mit steilen Flanken

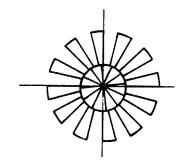

(ungeeignete Standorte)

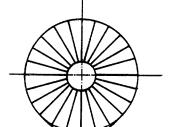


(c) Scharfe Erhebungen und Hindernisse

(können im Einzelfall geeignet sein)

INSTITUT FÜR
FLUGZEUGBAU

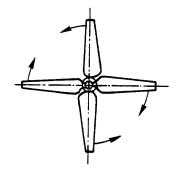

Freifahrende Turbinen - Windenergie

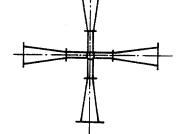

1999

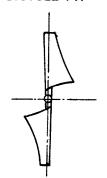
8

Typologie

Horizontale Achse, auftriebnutzend

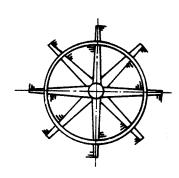


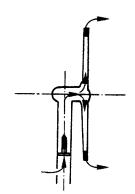


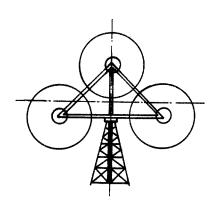

SCHNELL AUFER

LANGSAMLAUFER

BICYCLE TYP

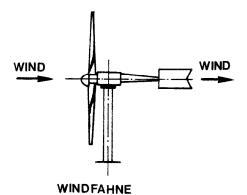


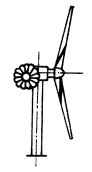


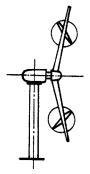

GEGENLÄUFIG

FLETTNER

SEGEL-ROTORBLATT





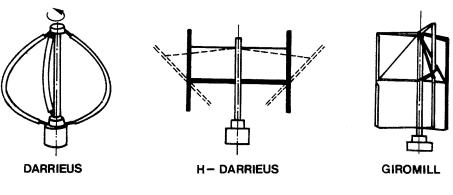

RINGGENERATOR

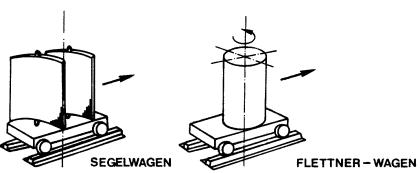
PNEUMATISCHE WELLE

MEHRFACHROTOR

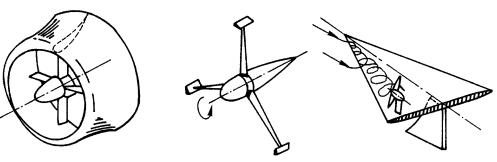
SEITENRAD

SCHLEPPTURBINE

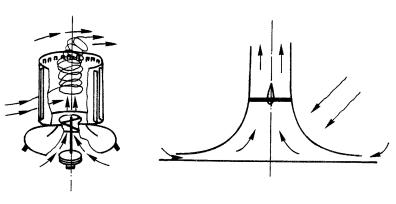

INSTITUT FÜR
FLUGZEUGBAU


Freifahrende Turbinen - Windenergie

1999


9

Vertikale Achse, auftriebnutzend


Konzentrierende Maschinen

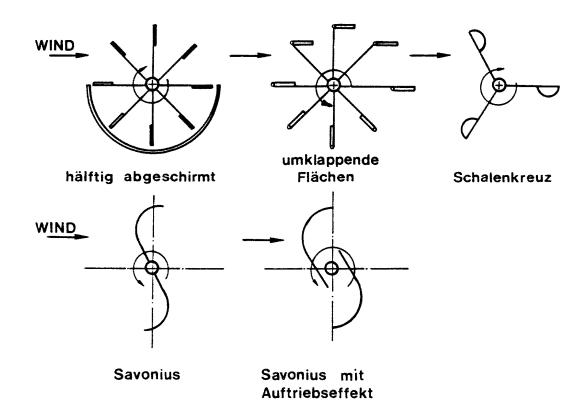
MANTELTURBINE

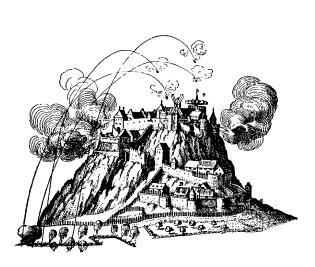
QUASI - MANTEL

VORDERKANTENWIRBEL

TORNADO TYP

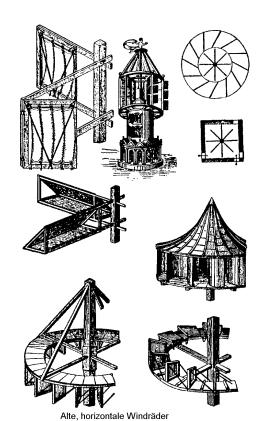
THERMIK-TURM


INSTITUT FÜR
FLUGZEUGBAU


Freifahrende Turbinen - Windenergie

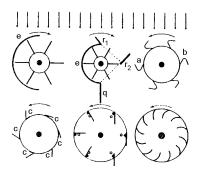
1999

10

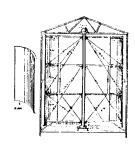

Horizontale oder vertikale Achse, widerstandnutzend

Windturbinen auf dem Hohentwiel 1641

Historische Windmühlen - Typen

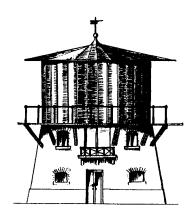


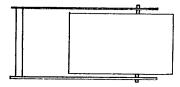
Freifahrende Turbinen - Windenergie


1999

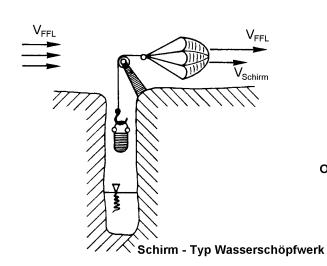

11

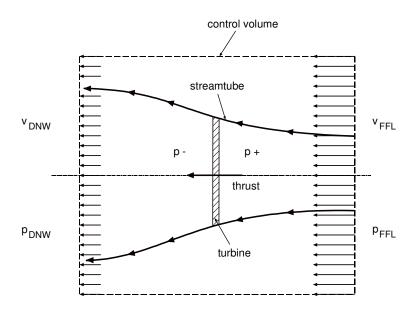
UNIVERSITÄT STUTTGART


Pananemonen, Vertikal-Achsen-Anlagen, schematisch



Vertikal-Achsen-Anlage von Lafond, Montpellier, 1930


Vertikal-Achsen-Anlage von Wolf


- Tiefste Stellung der Fläche, die hierauf vom Wind in die begrenzte Stellung
 umgelegt wird. Auftrieb
 obere Umkehrgrenze. Der Wind legt die Fläche in die
 Stellung. Abtrieb

Oszillierende, "schlagende" Windkraftanlage

12

Theorie

- 1. Annahmen:
- > keine Reibung
- > definierte, begrenzte Stromröhre
- > keine statischen Druckunterschiede
- Schubbelastung über Querschnitt konstant
- > kein drehende Strömung hinter dem Rotor, ohne Drall

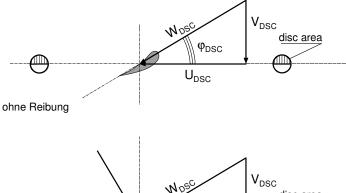
nach Betz ergibt sich:
$$\begin{split} P_{max} &= C_{p,max} \cdot \frac{\rho}{2} \cdot V_{FFL}^3 \cdot A \varnothing \text{ (10)} \\ C_{P,max} &= 16/27 \approx 0,59259... \quad \text{für } \varsigma = V_{DNW} \, / \, V_{FFL} = \frac{1}{3} \text{ (11)} \end{split}$$

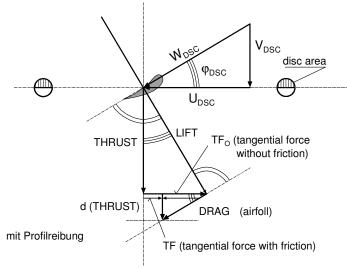
- 2. Annahmen wie unter 1. und zusätzlich:
 - Strömung hinter dem Rotor mit Drall
 - > quasi unendlich viele Rotorblätter (Siebmodell)

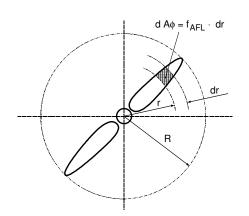
nach Prandtl/Betz:
$$C_{P, ideal} = \frac{\left(1-\zeta^2\right)}{2} \cdot \left(1+\zeta\right)$$
 (28)

nach Hütter:
$$C_{_{P,ideal}} = \left(1+\varsigma\right) \; \lambda_{_{0}}^{2} \; \left[R-1\right] \; \left(26\right), \quad R = \sqrt{1+\frac{\left(1-\varsigma^{2}\right)}{\lambda_{_{0}}^{2}}} \; \left(22\right)$$

INSTITUT FÜR
FLUGZEUGBAU


Freifahrende Turbinen - Windenergie


1999


13

3. Annahmen wie unter 1. und 2. Jedoch jetzt mit Reibung und endlicher Rotorblattzahl z :

Strömungsverhältnisse am Rotorblatt - Schnitt

Leistungsbeiwert
$$C_P \equiv \frac{Rotorwellenleistung}{V_{FFI}^3 \cdot A\phi \cdot \rho/2}$$
 (58) (59)

$$Schub/Widerstands\text{-}Beiwert \ C_{D,RTR} \equiv \ \frac{Rotorschub \, / \, Widers \, tan \, d}{V_{FFL}^2 \, \cdot \, A \phi \cdot \rho / 2}$$

Drehmomentenbeiwert $C_{TRQ} \equiv C_P / \lambda_{\omega TIP}$

Flächenbelastung
$$\pi \equiv \frac{\text{Installierte Generatorleistung}}{A\phi}$$

Leistung
$$P = M \cdot \omega$$

$$\text{Drehmornent} \qquad M = C_{\text{TRQ}} \cdot V_{\text{FFL}}^2 \cdot \frac{\rho}{2} \cdot A_{_{\varphi}} \cdot R_{\text{TIP}}$$

Auflösung der Rotorfläche in Kreisringe

$$\lambda_{\omega TIP} = R_{TIP} \cdot \omega / V_{FFL}$$

$$\omega = V_{FFI} \cdot \lambda_{\omega TIP} / R_{TIP}$$

INSTITUT FÜR
FLUGZEUGBAU

Freifahrende Turbinen - Windenergie

1999

14

Indices

AFL airfoil aerodynamisches Profil

Widerstand W D drag

DNW downwind weit stromabwärts

DSC disc Rotorebene

FFL free flow ungestörte Strömung

L lift Auftrieb A LDR lift to drag ratio Gleitzahl E Р power Leistung P

RTR auf den Rotor bezogen rotor TIP rotortip die Flügelspitze betreffend

TRQ Drehmoment M torque

TRS Schub S thrust Z number of blades = Blattzahl Z

Auftriebsbeiwert $C_a = 1$ (1) $C_{Lift} = 1$ Ø Rotorfläche im Wind Aø rotor area =

Festlegung

(2)
$$r_{si} = r_{TIP} \frac{2}{3\sqrt{n}} (i^{3/2} - (i-1)^{3/2}); 1 \le i \le n$$

$$\lambda_{\omega(r_{si})} = \lambda_{\omega r_{TIP}} \cdot (r_{(si)}/r_{TIP})$$

4
$$\lambda_{\omega(r_{TIP})} \equiv \lambda_{\omega,RTR}, r_{TIP} \equiv r_{RTR} \equiv D/2$$

$$\zeta \equiv v_{DNW}/v_{FFL} \quad (11)$$

Abkürzungen

$$\begin{array}{ccc} \hline & E_{(r_{si})} \equiv (C_{L,AFL}/C_{D,AFL})_{(r_{si})} \equiv LDR & \hline & 7 & Re_{(r_{si})}^* = r_{(Si)} \cdot v_{FFL}/v_{Luft}; \end{array}$$

7
$$R_{(r_{si})}^* = r_{(Si)} \cdot v_{FFL} / \nu_{Luft};$$

 $\nu_{Luft} \approx 15.1 \cdot 10^{-6} [m^2/s]$

(8)
$$R_{(r_{si})} \equiv \sqrt{1 + [(1 - \xi_{(r_{si})}^2)/\lambda_{\omega,(r_{si})}^2]}$$
 (22)

$$9 \quad K_{(\mathbf{r_{si}})} \equiv (1 - \zeta_{(\mathbf{r_{si}})}^{2}) \left(LDR_{(\mathbf{r_{si}})} \cdot \lambda_{DSC(\mathbf{r_{si}})} + 1\right) / LDR_{(\mathbf{r_{si}})} \cdot \lambda_{DSC(\mathbf{r_{si}})} \equiv C_{TRS} \equiv C_{D,RTR}$$

INSTITUT FÜR
FLUGZEUGBAU

Freifahrende Turbinen - Windenergie

1999

15

Integrationen

(10)
$$C_{P,RTR} = \frac{1}{n} \sum_{i=1}^{i=n} C_{P(r_{si})}$$

(1)
$$C_{TRQ,RTR} = C_{P,RTR}/\lambda_{\omega,RTR}$$
 (59)

(12)
$$C_{D,RTR} = \frac{1}{n} \sum_{i=1}^{i=n} K_{(r_{ni})}$$

Formeln

(13)
$$C_{P(r_{el})} = \eta_{Z,RTR} \cdot \eta_{LDR(r_{el})} \cdot C_{P(r_{el}),id.}$$
 (28)

(14)
$$\eta_{z,RTR} = (1 - (2 \ln 2/z \cdot \sqrt{1 + \lambda_{DSC (r_{si})}^2}))^2 (41)$$

(15)
$$\eta_{LDR(r_{si})} = (1 + \sqrt{1 - K_{(r_{si})}}) \cdot (LDR_{(r_{si})} - \lambda_{DSC(r_{si})}) / LDR_{(r_{si})} (1 + \xi_{(r_{si})})$$
 (39)

(16)
$$C_{P(r_{si}), id} = (R_{(r_{si})} - 1) (1 + \zeta_{(r_{si})}) \cdot \lambda_{\omega(r_{si})}^{2}$$
 (26)

17)
$$\operatorname{Re}_{(r_{si})} = \operatorname{Re}_{(r_{si})}^* \cdot 4 \pi \left(1 - \zeta_{(r_{si})}\right) / z \cdot \lambda_{\operatorname{DSC}(r_{si})} \cdot C_{L, \operatorname{AFL}(r_{si})}$$

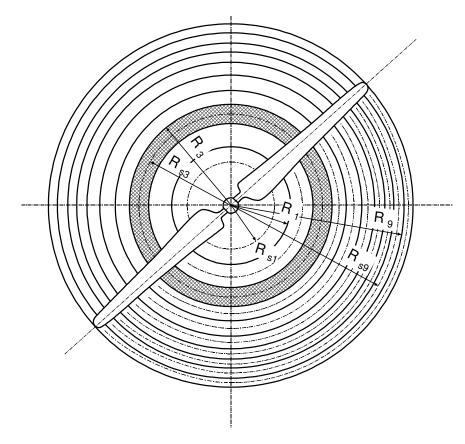
(18)
$$f_{AFL(r_{si})} = 8 \pi r_{(si)} (1 - \zeta_{(r_{si})})/z \cdot C_{L, AFL(r_{si})} \cdot (1 + \zeta_{(r_{si})}) \lambda_{DSC(r_{si})} \sqrt{1 + \lambda_{DSC(r_{si})}^2}$$
 (49)

(19)
$$\lambda_{DSC(r_{sl})} = (1 + R_{(r_{sl})}) \lambda_{\omega(r_{sl})} / (1 + \zeta_{(r_{sl})})$$
 (40)

$$20 \quad \varphi_{DSC(r_{si})} = \arctan \frac{1}{\lambda_{DSC(r_{si})}} \quad (29)$$

Die Zahlen in Klammern verweisen auf die entsprechenden Formeln in der Herleitung während der Vorlesung

INSTITUT FÜR
FLUGZEUGBAU


1999

16

UNIVERSITÄT STUTTGART

Beispiel GROWIAN:

Rotordurchmesser 100,4 m; Nenndrehzahl 18,5 U/min; Auslegungswindgeschwindigkeit 12,0 m/s; Auslegungsschnelllaufzahl λ_{ω} = 8,072; Umfangsgeschwindigkeit im Betriebspunkt U_{TIP} = 96,87 m/s; Nennleistung 3 MW.

Punkt Nr. i = 10-1	Teilung	Pro	ofil	Blatt- Dicke [%]	Blatt- Radius [m] R _{si}	Blatt- Tiefe [mm] f _{AFI}	
10	10/10	FX 77-\	N-153	15,2	48,728	1375	
9	9/10	4	,	15,5	46,091	1520	
8	8/10			16,0	43,293	1680	
7	7/10			16,5	40,301	1845	
6	6/10			17,0	37,068	2028	
5	5/10			17,5	33,524	2230	
4	4/10	+		18,3	29,555	2450	
3	3/10	FX 77-W-153		20,5	24,958	2710	
2	2/10	FX 77-\	FX 77-W-270		19,273	3025	
1	1/10	FX 77-\	W-400	39,0	10,541	3512	

1999

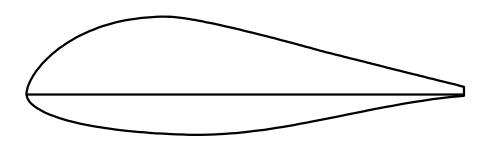
17

Koordinaten der bei GROWIAN verwendeten aerodynamischen Profile

Nr. x YO YU YO 2 .99893 .00084 .00097 .00636 3 .99572 .00099 .00141 .00737 4 .99039 .00143 .00216 .00870 5 .99296 .00231 .00325 .01035 6 .97347 .00367 00464 .01240 7 .96194 .00561 00627 .01483 8 .94844 .00801 00793 .01773 9 .93301 .01090 00962 .02104 10 .91573 .01408 01115 .02495 11 .89668 .01758 01263 .02923 12 .87592 .02118 01397 .03420 13 .85355 .02503 01536 .03951 14 .82967 .02902 01662 .04565 15 .80438 .03339 01797 .05193 16	00503 00563 00535 00512 00506 00521 00572 00656 00794 00969 01217 01508 01881 02296 02803 03360 04410 04707 05409	YO .02139 .02244 .02383 .02557 .02779 .03044 .03369 .03743 .04193 .04688 .05273 .05901 .06625 .07390 .08248 .09141 .10124 .11126 .12203	YU0208402067020410202202054021300224502429026570297903353038280435604996056970651507387
3 .99572 .00099 .00141 .00737 4 .99039 .00143 .00216 .00870 5 .99296 .00231 .00325 .01035 6 .97347 .00367 00464 .01240 7 .96194 .00561 00627 .01483 8 .94844 .00801 00793 .01773 9 .93301 .01090 00962 .02104 10 .91573 .01408 01115 .02495 11 .89668 .01758 01263 .02923 12 .87592 .02118 01397 .03420 13 .85355 .02503 01536 .03951 14 .82967 .02902 01662 .04565 15 .80438 .03339 01797 .05193 16 .77779 .03794 01914 .05890 17 .75000 .04291 02044 .06633	00563 00535 00512 00506 00521 00572 00656 00794 00969 01217 01508 01881 02296 02803 03360 04010 04707	.02244 .02383 .02557 .02779 .03044 .03369 .03743 .04193 .04688 .05273 .05901 .06625 .07390 .08248 .09141 .10124 .11126	02067 02041 02022 02025 02054 02130 02245 02429 02657 02979 03353 03828 04356 04996 05697 06515 07387
4 .99039 .00143 .00216 .00870 5 .99296 .00231 .00325 .01035 6 .97347 .00367 00464 .01240 7 .96194 .00561 00627 .01483 8 .94844 .00801 00793 .01773 9 .93301 .01090 00962 .02104 10 .91573 .01408 01115 .02495 11 .89668 .01758 01263 .02923 12 .87592 .02118 01397 .03420 13 .85355 .02503 01536 .03951 14 .82967 .02902 01662 .04565 15 .80438 .03339 01797 .05193 16 .77779 .03794 01914 .05890 17 .75000 .04291 02044 .06633 18 .72114 .04802 02152- .07433	00535 00512 00506 00521 00572 00656 00794 01217 01508 01881 02296 02803 03360 04010 04707	.02383 .02557 .02779 .03044 .03369 .03743 .04193 .04688 .05273 .05901 .06625 .07390 .08248 .09141 .10124 .11126	02041 02022 02025 02054 02130 02245 02429 02657 02979 03353 03828 04356 04996 05697 06515 07387
5 .99296 .00231 .00325 .01035 6 .97347 .00367 00464 .01240 7 .96194 .00561 00627 .01483 8 .94844 .00801 00793 .01773 9 .93301 .01090 00962 .02104 10 .91573 .01408 01115 .02495 11 .89668 .01758 01263 .02923 12 .87592 .02118 01397 .03420 13 .85355 .02503 01536 .03951 14 .82967 .02902 01662 .04565 15 .80438 .03339 01797 .05193 16 .77779 .03794 01914 .05890 17 .75000 .04291 02044 .06633 18 .72114 .04802 02152- .07433 19 .69134 .05355 02276 .08246	00512 00506 00521 00572 00656 00794 01217 01508 01881 02296 02803 03360 04010 04707	.02557 .02779 .03044 .03369 .03743 .04193 .04688 .05273 .05901 .06625 .07390 .08248 .09141 .10124 .11126	02022 02025 02054 02130 02245 02429 02657 02979 03353 03828 04356 04996 05697 06515 07387
6 .97347 .00367 00464 .01240 7 .96194 .00561 00627 .01483 8 .94844 .00801 00793 .01773 9 .93301 .01090 00962 .02104 10 .91573 .01408 01115 .02495 11 .89668 .01758 01263 .02923 12 .87592 .02118 01397 .03420 13 .85355 .02503 01536 .03951 14 .82967 .02902 01662 .04565 15 .80438 .03339 01797 .05193 16 .77779 .03794 01914 .05890 17 .75000 .04291 02044 .06633 18 .72114 .04802 02152- .07433 19 .69134 .05355 02276 .08246	00506 00521 00572 00656 00794 00969 01217 01508 01881 02296 02803 03360 04010 04707	.02779 .03044 .03369 .03743 .04193 .04688 .05273 .05901 .06625 .07390 .08248 .09141 .10124 .11126	02025 02054 02130 02245 02429 02657 02979 03353 03828 04356 04996 05697 06515 07387
7 .96194 .00561 00627 .01483 8 .94844 .00801 00793 .01773 9 .93301 .01090 00962 .02104 10 .91573 .01408 01115 .02495 11 .89668 .01758 01263 .02923 12 .87592 .02118 01397 .03420 13 .85355 .02503 01536 .03951 14 .82967 .02902 01662 .04565 15 .80438 .03339 01797 .05193 16 .77779 .03794 01914 .05890 17 .75000 .04291 02044 .06633 18 .72114 .04802 02152- .07433 19 .69134 .05355 02276 .08246	00521 00572 00656 00794 00969 01217 01508 01881 02296 02803 03360 04010 04707	.03044 .03369 .03743 .04193 .04688 .05273 .05901 .06625 .07390 .08248 .09141 .10124 .11126	02054 02130 02245 02429 02657 02979 03353 03828 04356 04996 05697 06515 07387
8 .94844 .00801 00793 .01773 9 .93301 .01090 00962 .02104 10 .91573 .01408 01115 .02495 11 .89668 .01758 01263 .02923 12 .87592 .02118 01397 .03420 13 .85355 .02503 01536 .03951 14 .82967 .02902 01662 .04565 15 .80438 .03339 01797 .05193 16 .77779 .03794 01914 .05890 17 .75000 .04291 02044 .06633 18 .72114 .04802 02152- .07433 19 .69134 .05355 02276 .08246	00572 00656 00794 00969 01217 01508 01881 02296 02803 03360 04010 04707	.03369 .03743 .04193 .04688 .05273 .05901 .06625 .07390 .08248 .09141 .10124 .11126	02130 02245 02429 02657 02979 03353 03828 04356 04996 05697 06515 07387
9 .93301 .01090 00962 .02104 10 .91573 .01408 01115 .02495 11 .89668 .01758 01263 .02923 12 .87592 .02118 01397 .03420 13 .85355 .02503 01536 .03951 14 .82967 .02902 01662 .04565 15 .80438 .03339 01797 .05193 16 .77779 .03794 01914 .05890 17 .75000 .04291 02044 .06633 18 .72114 .04802 02152- .07433 19 .69134 .05355 02276 .08246	00656 00794 00969 01217 01508 01881 02296 02803 03360 04010 04707	.03743 .04193 .04688 .05273 .05901 .06625 .07390 .08248 .09141 .10124 .11126	02245 02429 02657 02979 03353 03828 04356 04996 05697 06515 07387
10 .91573 .01408 01115 .02495 11 .89668 .01758 01263 .02923 12 .87592 .02118 01397 .03420 13 .85355 .02503 01536 .03951 14 .82967 .02902 01662 .04565 15 .80438 .03339 01797 .05193 16 .77779 .03794 01914 .05890 17 .75000 .04291 02044 .06633 18 .72114 .04802 02152- .07433 19 .69134 .05355 02276 .08246	00794 00969 01217 01508 01881 02296 02803 03360 04010 04707	.04193 .04688 .05273 .05901 .06625 .07390 .08248 .09141 .10124 .11126	02429 02657 02979 03353 03828 04356 04996 05697 06515 07387
11 .89668 .01758 01263 .02923 12 .87592 .02118 01397 .03420 13 .85355 .02503 01536 .03951 14 .82967 .02902 01662 .04565 15 .80438 .03339 01797 .05193 16 .77779 .03794 01914 .05890 17 .75000 .04291 02044 .06633 18 .72114 .04802 02152- .07433 19 .69134 .05355 02276 .08246	00969 01217 01508 01881 02296 02803 03360 04010 04707	.04688 .05273 .05901 .06625 .07390 .08248 .09141 .10124 .11126	02657 02979 03353 03828 04356 04996 05697 06515 07387
12 .87592 .02118 01397 .03420 13 .85355 .02503 01536 .03951 14 .82967 .02902 01662 .04565 15 .80438 .03339 01797 .05193 16 .77779 .03794 01914 .05890 17 .75000 .04291 02044 .06633 18 .72114 .04802 02152- .07433 19 .69134 .05355 02276 .08246	01217 01508 01881 02296 02803 03360 04010 04707	.05273 .05901 .06625 .07390 .08248 .09141 .10124 .11126	02979 03353 03828 04356 04996 05697 06515 07387
13 .85355 .02503 01536 .03951 14 .82967 .02902 01662 .04565 15 .80438 .03339 01797 .05193 16 .77779 .03794 01914 .05890 17 .75000 .04291 02044 .06633 18 .72114 .04802 02152- .07433 19 .69134 .05355 02276 .08246	01508 01881 02296 02803 03360 04010 04707	.05901 .06625 .07390 .08248 .09141 .10124 .11126	03353 03828 04356 04996 05697 06515 07387
14 .82967 .02902 01662 .04565 15 .80438 .03339 01797 .05193 16 .77779 .03794 01914 .05890 17 .75000 .04291 02044 .06633 18 .72114 .04802 02152- .07433 19 .69134 .05355 02276 .08246	01881 02296 02803 03360 04010 04707	.06625 .07390 .08248 .09141 .10124 .11126	03828 04356 04996 05697 06515 07387
15 .80438 .03339 01797 .05193 16 .77779 .03794 01914 .05890 17 .75000 .04291 02044 .06633 18 .72114 .04802 02152- .07433 19 .69134 .05355 02276 .08246	02296 02803 03360 04010 04707	.07390 .08248 .09141 .10124 .11126	04356 04996 05697 06515 07387
16 .77779 .03794 01914 .05890 17 .75000 .04291 02044 .06633 18 .72114 .04802 02152- .07433 19 .69134 .05355 02276 .08246	02803 03360 04010 04707	.08248 .09141 .10124 .11126	04996 05697 06515 07387
17 .75000 .04291 02044 .06633 18 .72114 .04802 02152- .07433 19 .69134 .05355 02276 .08246	03360 04010 04707	.09141 .10124 .11126	05697 06515 07387
18 .72114 .048020215207433 19 .69134 .0535502276 .08246	04010 04707	.10124 .11126	06515 07387
19 .69134 .0535502276 .08246	04707	.11126	07387
		-	
20 .66072 .0591302376 .09113	05409	.12203	
			08367
21 .62941 .0651202490 .09963	06273	.13257	09343
22 .59755 .0711302578 .10863	07070	.14370	10343
23 -56526 .0774002601 .11728	07660	.15411	11093
24 .53270 .0836302757 .12654	00155	.16510	11741
25 .50000 .0899702846 .13530	08472	.17524	12169
26 .46730 .0960602908 .144633	08732	.18562	12533
27 .43474 .1020902984 .15263	00870	.19496	12738
28 .40245 .1075803025 .16074	O0970	.20408	12883
29 .37059 .1128003088 .16730	08959	.21126	12843
30 .33928 .1169603105 .17185	00920	.21617	12758
31 .30866 .1204003154 .17340	08785	.21750	12531
32 .27886 .1210503143 .17316	08640	.21677	12282
33 .25000 .1203703166 .17039	00401	.21303	11906
34 .22221 .11791 03134 .16616 35 .19562 .11449 03123 .15975	08163 07832	.20757 .19952	11521 11019
36 .17033 .1095403064 .15241	07517-	.19034	10527
37 .14645 .1037203021 .14329	07104	.17903	09919
38 .12408 .0963902929 .13370	06724	.16710	09344
39 .10332 .0883602849 .12248	06239	.15320	08650
40 .08427 .0792802713 .11134	05803	.13928	08013
41 .06699 .0701302590 .09869	05261	.12379	07250
42 .05156 .0601402414 .06696	04787	.10884	06587
43 .03806 .0504802255 .07397	04193	.09267	05777
44 .02653 .0403202016 .06221	03699	.07799	05081
45 .01704 .0308901817 .04961	03070	-06240	04218
46 .00961 .0214301482 .03902	02524	.04911	.03430
47 .00428 .0136501115 .02722	01764	.03419	02386
48 .00107 .0059100464 .01752	01273	.02141	01624

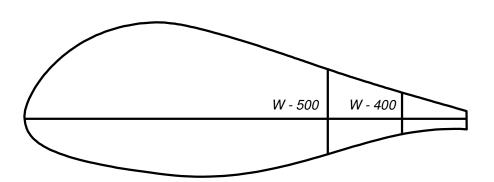
INSTITUT FÜR
FLUGZEUGBAU

Freifahrende Turbinen - Windenergie


1999

18

Aufrisse der bei GROWIAN verwendeten aerodynamischen Profile



Form des 15,3% dicken **FX 77 - W - 153 Profils**

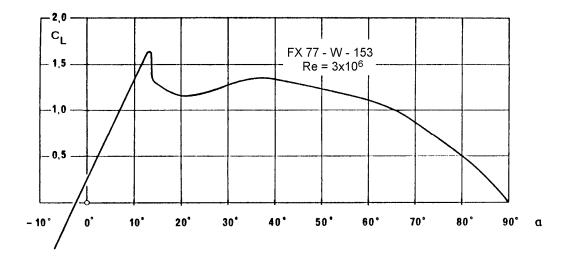
Form des 27% dicken **Profils**

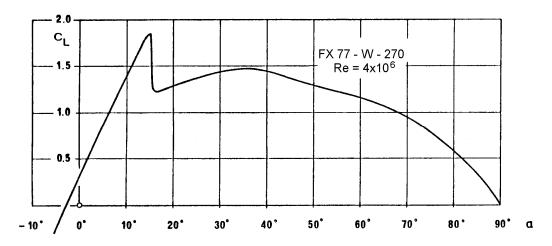
FX 77 - W - 270 s (FX 77 - W - 258)

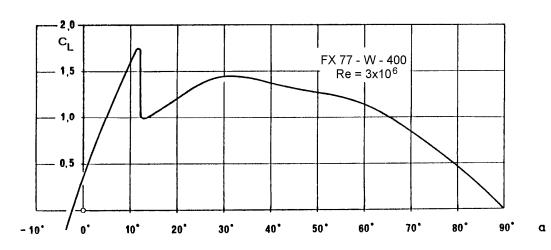
Form des 34,3% dickenProfils sowie der Profile 400 und 500

FX 77 - W - 343

INSTITUT FÜR
FLUGZEUGBAU

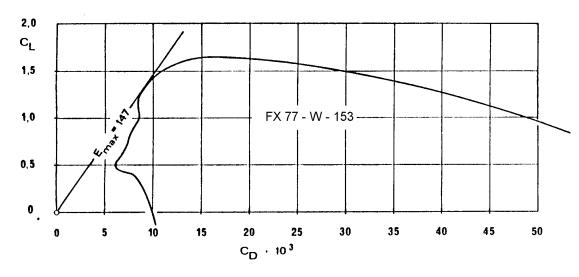

Freifahrende Turbinen - Windenergie

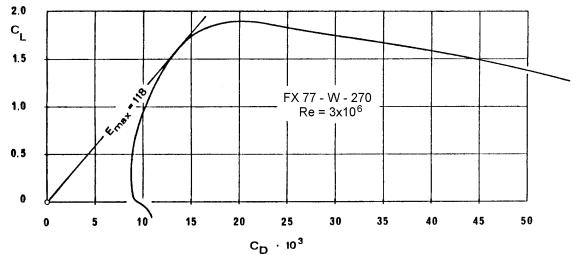

1999

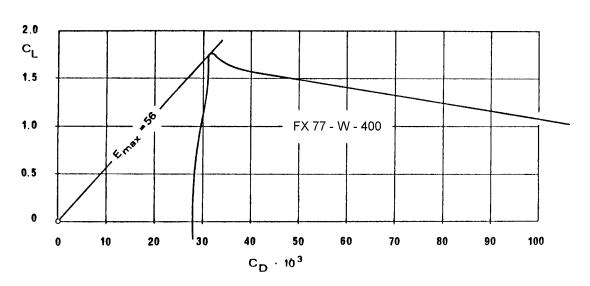

19

Auftriebsbeiwert C_L über dem Anstellwinkel

Der Verlauf wurde für Winkel $\alpha > 20\,^{\circ}$ sinnvoll ergänzt, entsprechend bekannter Messungen an anderen Profilen

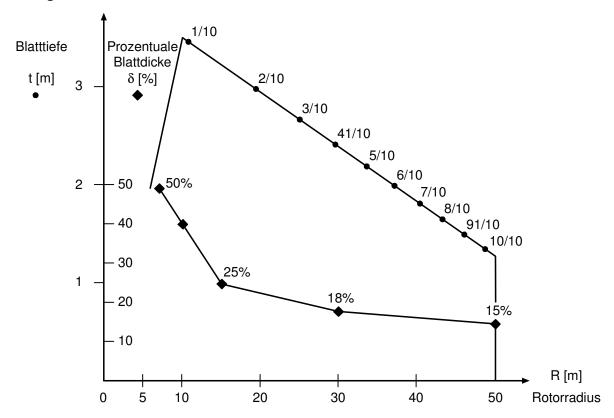

INSTITUT FÜR
FLUGZEUGBAU


Freifahrende Turbinen - Windenergie

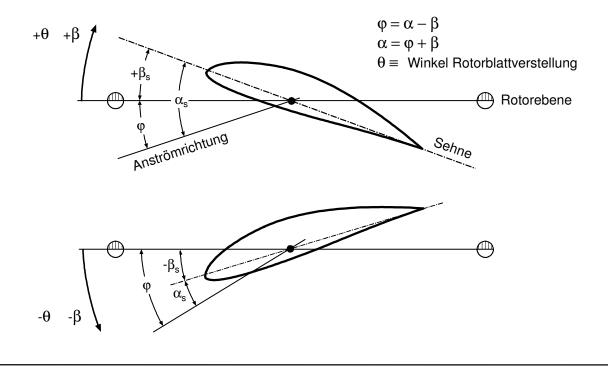

1999

20

Polaren der bei GROWIAN eingesetzten aerodynamischen Profile

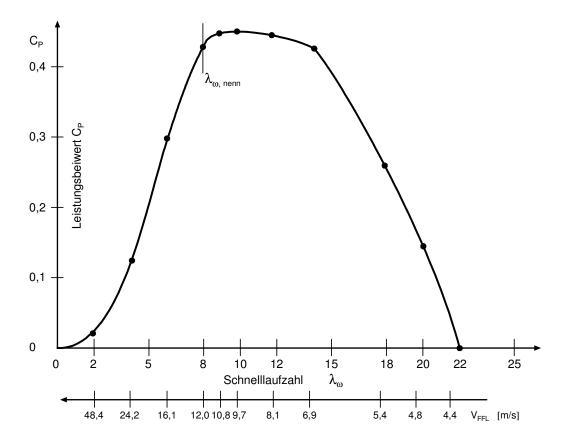

INSTITUT	FÜR
FLUGZEU	GBAU

1999


21

UNIVERSITÄT STUTTGART

Flügelumriss des GROWIAN - Rotorblattes, Verlauf von Blattdicke / Blatttiefe

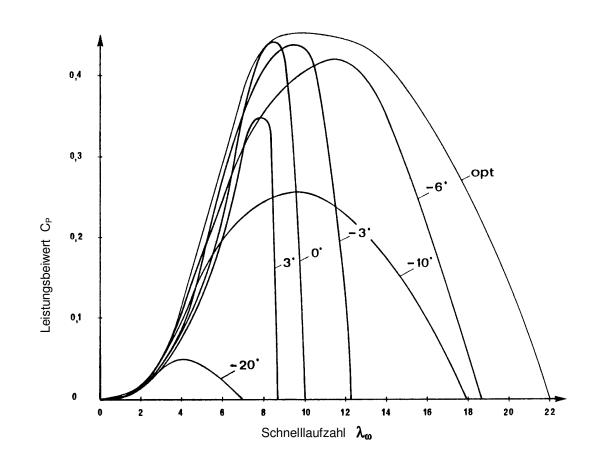


Winkeldefinitionen am Rotorblatt-Schnitt für Rotorblatt-Verwindung

22

Rechnerergebnisse der optimalen $C_P - \lambda_{\omega}$ -Kurve

λ_{ω}	C _P
2	0,018
4	0,123
6	0,229
8,072	0,439
9	0,450
10	0,452
12	0,444
14	0,425
18	0,254
20	0,142
22	-0,004


INSTITUT FÜR
FLUGZEUGBAU
UNIVERSITÄT STUTTGART

1999

23

$\mathcal{C}_{\mathit{P}} - \lambda_{\omega}$ -Kurven für verschiedene Blattverstellwinkel heta

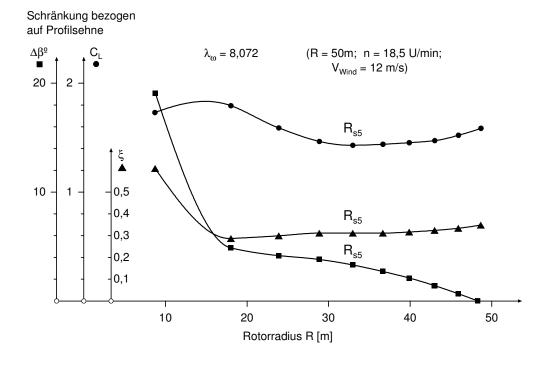
Punkt Nr. i = 10 - 1	Teilung	- 20°										
10	10/10	- 12,37°	- 2,37°	1,63°	4,63°	7,63°	10,63°					
9	9/10	- 13,04°	- 3,04°	0,96°	3,96°	6,96°	9,96°					
8	8/10	- 13,77°	- 3,77°	0,23°	3,23°	6,23°	9,23°					
7	7/10	- 14,51°	- 4,51°	- 0,51°	2,49°	5,49°	8,49°					
6	6/10	- 15,19°	- 5,19°	- 1,19°	1,81°	4,81°	7,81°					
5	5/10	- 15,67°	- 5,67°	- 1,67°	1,33°	4,33°	7,33°					
4	4/10	- 16,05°	- 6,05°	- 2,05°	0,95°	3,95°	6,95°					
3	3/10	- 16,43°	- 6,43°	- 2,43°	0,57°	3,57°	6,57°					
2	2/10	- 17,69°	- 7,69°	- 3,69°	- 0,69°	2,31°	5,31°					
1	1/10	- 32,97°	- 22,97°	-18,97°	-15,97°	-12,97°	- 9,97°					

INSTITUT FÜR
FLUGZEUGBAU

1999

24

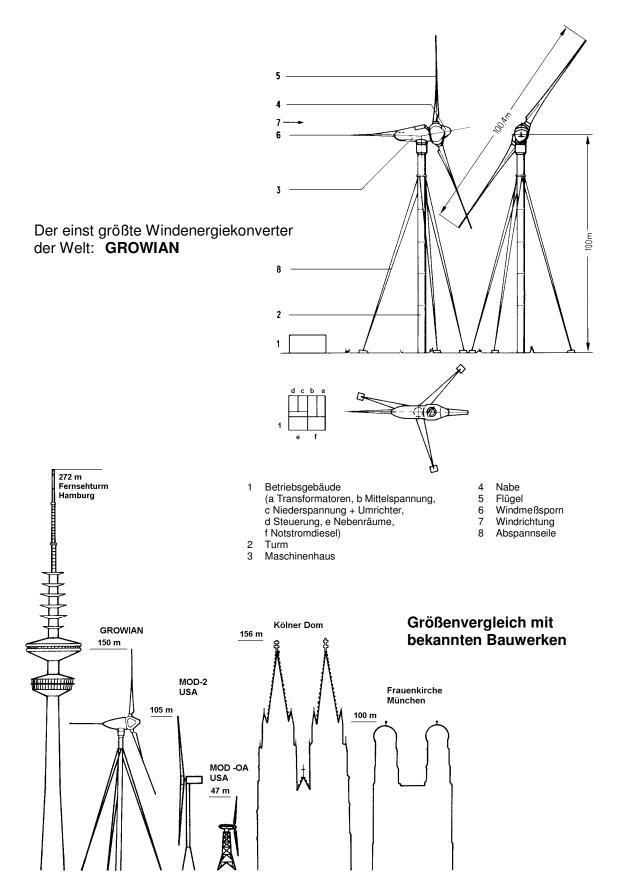
UNIVERSITÄT STUTTGART


Ergebnisse für GROWIAN

Auslegungsschnelllaufzahl λ_{ω} = 8,072; Rotordurchmesser D = 100,4 m; Nenndrehzahl n = 18,5 U/min; Windgeschwindigkeit V = 12,0 m/s

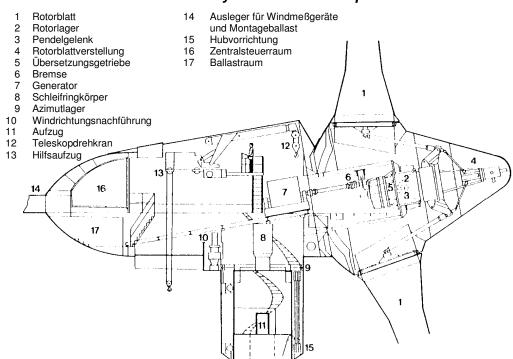
Teilung	R _{si} m	R _{si} %	λ ωί	υS	$\lambda_{ DSCi}$	ηzi	λ _{DSCi}	C Li	E i	η _{Ei}	C pi	αsi°	βsi°	$\Delta eta_{ extsf{si}}$ °
10/10	48,728	97,5	7,867	0,36	4,92	0,885	11,61	1,55	134	0,913	0,476	12,55	+7,63	0
9/10	46,091	92,2	7,441	0,34	5,12	0,880	11,15	1,50	139	0,920	0,478	12,08	+6,96	0,67
8/10	43,293	86,6	6,989	0,33	5,41	0,874	10,56	1,46	142	0,925	0,477	11,64	+6,23	1,40
7/10	40,301	80,6	6,506	0,33	5,81	0,865	9,03	1,42	143	0,931	0,474	11,30	+5,49	2,14
6/10	37,068	74,1	5,984	0,33	6,30	0,854	9,05	1,40	144	0,936	0,471	11,11	+4 81	2,82
5/10	33,524	67,1	5,412	0,32	6,90	0,840	8,26	1,42	143	0,942	0,465	11,23	+4,33	3,30
4/10	29,555	59,1	4,771	0,31	7,74	0,822	7,36	1,46	141	0,947	0,456	11,69	+3,95	3,68
3/10	24,958	49,9	4,029	0,30	9,04	0,794	6,28	1,56	133	0,951	0,441	12,61	+3,57	4,06
2/10	19,273	38,6	3,111	0,29	11,45	0,744	4,93	1,77	113	0,954	0,409	13,76	+2,31	5,32
1/10	10,541	21,1	1,702	0,60	24,07	0,515	2,24	1,72	54	0,956	0,239	11,10	-12,972	0,60

$$\overline{C}_{P} = 0,439$$

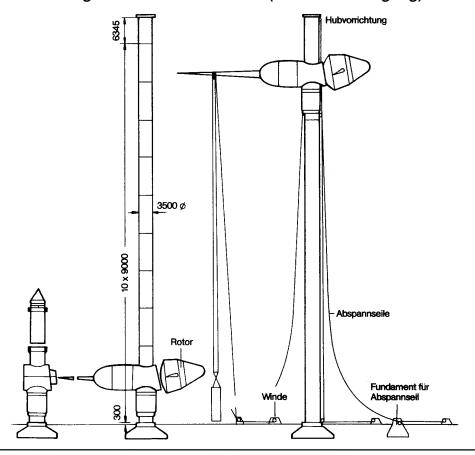

Verlauf von notwendigem Auftriebsbeiwert C_L und Abminderungsfactor ς Sowie der Blattverwindung (-schränkung) β über dem Radius des **GROWIAN** Rotorblattes

1999

25


Freifahrende Turbinen - Windenergie

1999


26

UNIVERSITÄT STUTTGART

Untersysteme im Turmkopf

Montage des Maschinenhauses (Turmdurchdringung)

UNIVERSITÄT STUTTGART

Freifahrende Turbinen - Windenergie

1999

27

Vorgehensweise bei der Auslegung von Windenergie-Konvertern (Beispiele in Klammern sind die GROWIAN-Werte)

1. Festlegung einer Rotorflächenbelastung π (Watt/m²)

- windschwache Gebiete 30 - 60 (Watt/m²)

- windstarke Gebiete 100 - 300 (Watt/m²)

Dies sind Erfahrungswerte; bei höheren Türmen die obere Grenzzahl wählen (379 Watt/m²).

- 2. Aus der absoluten, gewünschten Leistung (3MW) ergibt sich ein notwendiger Durchmesser D (100,4 m).
- 3. Festlegung einer Nennwindgeschwindigkeit (12 m/s) bei der Nennleistung erzielt werden soll. Häufigste oder mittlere Windgeschwindigkeit wählen. Turmhöhe beachten sowie Geländefaktor a, Umdruck S4.
- 4. Festlegung der Rotorblattzahl z (z = 2).

Für mechanische Energiewandlung: Vielblattrotor, Langsamläufer mit

hohem Anlaufmoment, $\lambda_{\omega} \leq 3$

Für elektrische Energiewandlung : 2 bis 3 – Blatt - Rotor, Schnellläufer,

Anlaufprobleme, Blattverstellung notwendig zur Leistungsregelung und Sturmsicherung, $\lambda_{\omega} > 4$

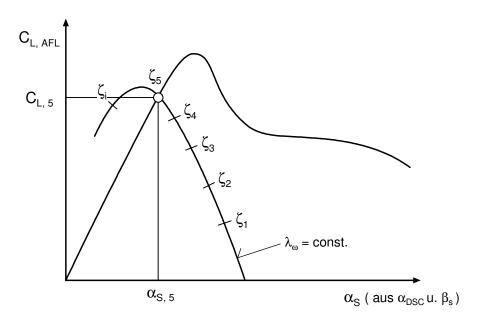
- Festlegung einer Nenndrehzahl (18,5 U/min). Einfluß auf Getriebegröße über die Wahl des Generators (1 500 U/min) beachten. (Falls eine Getriebeanlage gewählt wird)
- 6. Auswahl von geeigneten Profilen vornehmen. Bei Schnelläufern hohe Gleitzahlen anstreben. Bauweise beachten. Doppelseitig verwölbteProfile mit einwärts gewölbter Unterseite nicht für Metall- oder Holzbauweise geeignet. Eventuell gerade Unterkanten.
- 7. Mit Formeln 18, 8 und 19 erste Aussage über Blatttiefenverlauf entlang dem Radius machen. Dabei C_L sinnvoll einsetzen (1,4), $\zeta = 1/3$ wählen und z aus Punkt 4 übernehmen.
- 8. Festlegung der endgültigen Blattumrissform. Kompromiß aus Statik, Dynamik, Aerodynamik und Bauweise. Kosten beachten.
- 9. Berechnung der C_P λ_{ω} -Optimalkurve mit allen 20 Gleichungen (außer Gleichungen 4, 7, 11, 12, 17 aber mit 18 als Kontrollgleichung). Dabei Variation von ζ und damit des Geschwindigkeitsdreieckes für jede gewählte Radiusposition. Ermittlung von $\zeta_{\text{opt.}}$ mit Hilfe der aerodynamischen Kennwerte C_L , α , E bzw. LDR. Jeder λ_{ω} -Wert ergibt einen aufsummierten $C_{P,\text{opt.}}$ -Wert und eine dazugehörende, optimale Rotorblattverwindung.
- 10. Für den Auslegungspunkt (GROWIAN λ_{ω} = 8,072) wird nun die Blattverwindung als eingefroren betrachtet. Der Auslegungspunkt ist auf der Optimalkurve frei wählbar und kann in die Iteration mit einbezogen werden. Meist wird der Auslegungspunkt etwas links vom Maximum der Optimalkurve positioniert. Mit der festgehaltenen, eingefrorenen Blattverwindung oder -schränkung wird das Rotorblatt gebaut. Die Betriebsstellung dieses Blattes im Nennpunkt wird als θ = 0° Stellung bezeichnet. Ausgehend davon wird die Blattverstellung (positiv oder negativ) gerechnet.

INSTITUT FÜR
FLUGZEUGBAU

Freifahrende Turbinen - Windenergie

1999

28


11. Berechnung der realen $C_P - \lambda_\omega$ Kurve für $\theta = 0^\circ$. Die Kurve zeigt über den gesamten Windgeschwindigkeitsbereich die Anlagenleistung bei festgehaltenem, quasi starren Rotor. Diese reale $C_P - \lambda_\omega$ -Kurve berührt die Optimalkurve natürlich im Betriebspunkt $(\lambda_\omega,_{nenn})$.

Beim dazu notwendigen Iterationsverfahren wählt man beliebige λ_{ω} -Werte. Dabei bedeutet bei n= const. ein $\lambda_{\omega}>\lambda_{\omega,nenn}$ eine kleinere Windgeschwindigkeit und ein Wert $\lambda_{\omega}<\lambda_{\omega,nenn}$ eine größere Windgeschwindigkeit. Man untersucht für jeden Profilschnitt die Lage im Strömungsfeld (Winkel β_s) und sucht den ζ -Wert der den aerodynamischen Profileigenschaften entspricht und zwar über den Winkel ϕ_{DSC} . Nur für ein passendes ζ gibt es ein passendes Wertepaar C_L/α_s . (Siehe Diagramm).

Dabei ergibt sich ein $\zeta > \zeta = 1/3$ für $\lambda_{\omega} < \lambda_{\omega, nenn}$ und $\zeta < \zeta = 1/3$ für $\lambda_{\omega} > \lambda_{\omega, nenn}$. Bei plötzlich auftretenden, großen λ_{ω} -Werten (bei n = const., also für kleine Windgeschwindigkeiten) wird die Strömung dabei im Innenbereich des Rotorblattes früher als im Außenbereich Nullauftrieb liefern, d.h. keinen Beitrag zur Leistung bringen.

Bei plötzlich auftretenden, kleinen λ_{ω} -Werten (bei n = const., also für große Windgeschwindigkeiten), wird die Strömung früher im Innenbereich als im Außenbereich abreissen, d.h. die inneren Stützstellen liefern zuerst keinen Leistungsbeitrag. In beiden Fällen ist eine schnell reagierende Rotorblattverstellung von großem Vorteil.

12. Die Berechnung des gesamten C_P - λ_{ω} -Kennfeldes bei Rotorblatteinstellwinkel $\theta \neq 0^{\circ}$ erfolgt wie unter Punkt 11 beschrieben. Der örtlicheWinkel β_s erhöht sich je nach Größe des Blattverstellwinkels um den entsprechenden θ -Wert (an allen Schnittstellen). Man variiert dabei wiederum den Abminderungsfaktor ζ solange bis das C_L / α_S -Wertepaar gefunden ist, das der Profilcharakteristik entspricht,

Darstellung des Iterationsverfahren zur Bestimmung des Kennfeldes bei Rotorblattverstellung (Siehe Punkt 11 und 12)

Freifahrende Turbinen - Windenergie

1999

29.1

UNIVERSITÄT STUTTGART WIND KRAFT JOURNAL Leistungsstatistik aus der Betreiberdatenbasis 3/99

1	3/99 Leistungsstatistik aus der Betreiberdatenbasis WIND KRAFT JOURNAL																			
KW	Rotor ø	Rotor m2	Nabe m	m/s in 10 m	m/s in 30 m	Hersteller	Anzahl WKA	PLZ	Ort	Seit	kWh 1998	kWh 1999	kWh/m2 1999	kWh 1/99	kwh/m2 1/99	kWh 2/99	kWh/m2 2/99	kWh 3/99	kWh/m2 3/99 kWh 4/99	kWh/m2 4/99
	40,3		65,0 65,0		4.5	Enercon Enercon			Lippberg Welver-Flerke	4/97 10/98	772000 213900	259927	204	86733	67	82586	64	47388		
	40,3		50,0	:	4.)	Enercon			Waldhausen	12/96				112337 128229	88 100	103363 125933	81 98	49656 78534		
	40,3		50,0 50,0	4,6	4.7 5.4	Enercon Enercon		59581 G	Suttrop Spitze Warte	7/97 10/96	791400 1141000	305678 405980		120479 145076	94	84159 122339	65 95	59479	46 41561	32
500	40,3	1276	51,0	٠,0	5,9	Enercon		59602 I	Spitze Warte	11/96				157690		112860	88 88	76331 95390	59 62234 74 60990	_
	40,3		50,0 65,0	•	•	Enercon Enercon			Spitze Warte Spitze Warte	11/96 11/96				163573 158210		142874 122310	112 95	75008		
500	40,3	1276	65,0		5.0	Enercon		59609 L	Anröchte-Effeln	11/96	1097400					125646	98	95610 60483		
	40,3		65,0 65,0		5,1	Enercon Enercon		59757 D 63633 A01	Arnsberg-Müschede Birstein	10/96 11/97	784300 343000	289652 321117	227 252	113648 102267	89 80	84720 93609	66 73	54346 69994		
500	40,3	1276	65,0			Enercon		63633 A02	Birstein	11/97	375200	351969	276	112821	88	103351	81	73731	57 62 066	
	40,3		65,0 65,0	:		Enercon Enercon			Schwäbisch-Hall Schwäbisch-Hall	7/96 8/96	538500 603200	211199 241378	166 189	57765 70404	45 55	83507 87798	65 68	33846 44184		28
500	40,3	1276	65,0		4,7	Enercon		84140 A	Gangkofen	10/97	596500	242434	190	60906	47	95006	74	53036	41 33486	26
	40,3		65,0 65,0		4,6 4,6	Enercon Enercon			Gangkofen Gangkofen	11/98 11/98	55400 54900	220525 222155	173 174	52150 51464	40 40	91623 94506	71 74	47514 47269	37 29238 37 28916	
	40.3		50,0	4,3	4.7	Enercon		93339 A01	Riedenburg	1/95	553200	227603	178	59054	46	85644	67	44715	35 38190	29
	40,3 40,3		65,0 65,0		4,8	Enercon Enercon			Riedenburg Ringleben	11/97 9/97	595500 910700	245258 325059	192 255	64357 96188	50 75	90201 117352	70 92	47690 58819		
	40,3		50,0			Enercon		99510 A	Stobra	1/95	972700	354118	278	125300	98	112840	88	59780	46 56198	44
	37,5 41,0		40,0 50,0	:	:	Jacobs Jacobs			Süderbehmhusen Süderbehmhusen	5/94 7/96	1012100 1263100	341387 388211	309 294	98770 123240	89 93	104219 110177	94 83	69185 67622		
	37,5 43,0		40,0 48,0	5 1	62	Jacobs	5		Klixbüll/Wraagaard	10/95		1740611		613077	111	480462	87	335140	60 311932	56
	43,2		47,0	5,1	6,3	Micon Micon		33142 G01	Kronprinzenkoog/P Büren	8/96 12/95	1379100 1075400	461853 373744	318 255	137510 121000	94 82	126540 122830	87 83	93283 75640	64 104520 51 54274	71 37
	43,2 1 43,2 1		47,0 46,0			Micon Micon	5	33142 G02			1115800	380715	260	120562	82	125000	85	78609	53 56544	38
	43,2		46,0	:	:	Micon	6		Ulrichstein UlrichstHelpers.	5/95 6/96	4738500 5150400		291 274	734234 843363	100 95	582395 725050	79 82		58 384567 54 365587	52 41
	43,2 1 43,2 1		46,0 47,0		5.2	Micon Micon		59519 D03	Möhnesee	8/95	951100	349770		134790	91	84260	57	83580	57 47140	32
	43,2 1		46,0	:	5,7	Micon			Möhnesee/Thein. Rüthen-Menzel	8/95 7/95	996600 1060500	367590 283270	251 193	142390 -0	97 0	87860 115550	59 78	86390 101010	58 50950 68 66710	34 45
	43,2 I		51,0 46,0	3,8	4,9	Micon Micon		59602 G 59602 L02		11/95 11/96	1252200 753600	426202 404850	291 276	142880 137670	97 93	135268 110660	92 75	84380 96480		43 40
500	43,2 1	466	47.0	:		Micon		59602 L03	Spitze Warte	12/96	921500	270940	185	-0	0	115260	78	96450	65 59230	40
	43,2 I 43,0 I		46,0 46,0	•	•	Micon NEG Micon	,		Spitze Warte Weesbydamm1	11/96 9/98	1123200 275800	409570 405721	279 279	143230 129700	97 89	105660 86625	72 59		67 61840 56 107749	42 74
500	43,8 1	507	50,0	4,3	:	NedWind		33039 A	Nieheim-Holzhausen	10/95	683800	241820	160	90670	60	76664	50		31 27586	18
	43,8 1 41,0 1		65,0 53,0			NedWind Nordtank	5	50151 A 24855 B02	Kerpen Bollingstedt	12/96 3/95	3172000 1055700	854536 377721	113 286	113375	0 85	355735 98527	47 74		34 239360 54 94388	31 71
	41.0 1		52,0	4,1		Nordtank		24855 B03	Bollingstedt	11/95	1038200	367320	278	110485	83	96939	73	68342	51 91554	69
	41,0 1 41,0 1		52,0 51,0	4,I	:	Nordtank Nordtank		24855 BU4 24881 B			1064900	377739 391213	286 296	113452 120634	85 91	99295 104992	75 79	70684 72203	53 94308 54 93384	71 70
	41,0 1 41,0 1		50,0			Nordtank Nordtank			Süderschmedeby I		1354000	477270	361	146380	110	116300	88	93010	70 121580	92
	41,0 1		50,0 52,0			Nordtank			Süderschmedeby2 Espertoftfeld		1336500 1070900	472590 378106	358 286	146260 116914	110 88	114250 98960	86 74		69 120550 53 91880	91 69
	41,0 I 41,0 I			4,3 4,3	-	Nordtank Nordtank		24891 B01 24891 B02	Struxdorf		1225800		327	133210		114940	87	81550	61 101750	77
500	41,01	320	50,0	4,8	:	Nordtank		25541 N	Brunsbüttel		1202500 1293300	400120 436354	331	122523	93 92	103700 127781	78 96		56 98710 67 96430	74 73
	37,0 1 37,0 1		36,5 35,0	4,9	•	Nordtank Nordtank			Volsemenhusen Hemmingstedt	9/93	943400 1073000	336610 354660		90962 100740	84 93	106923 107640	99 100		56 77460 61 80040	72 74
500	37,0 1	075	50,0	. :		Nordtank		25704 L	Barsfleth	10/94	1244100	435735	405	131445	122	124200	115		77 97290	90
	37,0 I 41,0 I		35,0 50,0	6,2 4,9		Nordtank Nordtank		25704 Q 25704 S			1057300 1505400	374191 496872		111330 149264		108104 133523	100 101		66 83667 75 114899	77 87
500	41,0 1	320	50,0			Nordtank	5	25709 AA	Kronprinzenk./WeG3	9/96	3919500	2173861	329	651447	98	587146	88		66 496801	75
	37,0 1 37,0 1		36,5 36,5	5,2 5,2		Nordtank Nordtank					1123000 1008300	278039 246576		117286 105292	109 97	-0 -0	0 0		68 86915 60 7673 2	80 71
500	37,0 1	075	36,5	5,2		Nordtank		25764 O08]	Friedrichsgabekoog	12/94	1104200	268740	250	112868	104	-0	0	71229	66 8464 3	78
	37,0 1: 37,0 1:		35,0 35,0	5,1 5,1	6,1 6,1	Nordtank Nordtank			Breklumer Koog8 Breklumer Koog7		1099500 1096600	414462 403433		124371 125648		109176 99254	101 92		74 101127 71 101668	94 94
500	37,0 1 37,0 1	075	35,0 35,0	5,1	6,1	Nordtank		25821 N07 I	Breklumer Koog6	1/93	1085200	399695	372	122656	114	103934	96	78105	72 95000	88
500	41,0 1	320	50,0	5,1 5,1	0,1	Nordtank Nordtank		25821 N08 1 25821 S01 3	Breklumer Koog5 Struckum/B		1050000 1459000			121817 145611		100938 127006	93 96		71 92269 0 132510	85 100
	41,0 1. 41,0 1.		50,0 50,0	5,1 5,1	٠	Nordtank Nordtank		25821 S02 S 25821 S03 S	Struckum/B	2/96	1471600	529586	401	158142	119	134292	101	105395	79 131757	99
500	37,0 1	075	35,0			Nordtank	7		Struckum/B Brollingsee			534319 3391161				130910 854419	99 113		83 131589 86 851207	99 113
	41,0 1; 41,0 1;		50.0 50.0	3,6	4,2	Nordtank Nordtank	5	33181 C ' 34519 D '	Wünnenberg-Helmern	8/95	1007100	363200	275	122480	92	121570 543208	92 82	65210	49 53940 43 215471	40 32
500	41,0 13	320	50,0	4,9		Nordtank	J	66629 A08 I	Freisener Höhe	9/95	994700	1575173 407242	308	148021	112	101486	76	89072	67 68663	52
	41,0 11 41,0 11		50,0 50,0	4,9 4,9	5,8 5,8	Nordtank Nordtank			Freisener Höhe Freisener Höhe		1044200 1015400	220266 395882		135769 139614		84497 95560	64 72	0 92592	00 70 68116	0 51
500	41,0 1	320	50,0	4,9	5,8	Nordtank		66629 A11 I	Freisener Höhe	9/95	914800	356936	270	135416	102	83029	62	81988	62 56503	42
	37,0 10 37,0 10		40,0 43,0		5,1	Tacke Tacke			HH-Georgswerder HH-Georgswerder	3/95 5/96	695700 556800	236235 228722	220 213	63094 60446	58 56	75065 75858	69 70		46 47803 41 47844	44 44
									-											

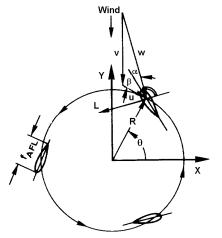
UNIVERSITÄT STUTTGART

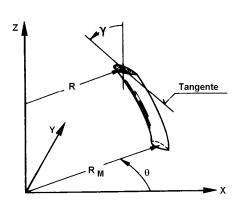
Freifahrende Turbinen - Windenergie

1999

29.2

ı	W	WIND KRAFT JOURNAL						Leistungsstatistik aus der Betreiberdatenbasis											3/99		
KW	Rotor ø	Rotor m2	Nabe m	m/s in 10 m	m/s in 30 m	Hersteller	Anzahl WKA	PLZ	Ort	Seit	kWh 1998	kWh 1999	kWh/m2 1999	kWh 1/99	1/00 1/00		kWh/m2 2/99	_	kWh/m2 3/99	kWh 4/99	kWh/m2 4/99
	47,0 1 49,0 1		65,0 60,0			Vestas Fuhrländer		25764 AC04	Süderdeich Hohenroth	12/98						-		-0			79
750	52,0 2	124	73,9		4,6	Wind Wor	ld	47574 B01	Goch-Pfalzdorf	5/97 1/99							72 66	-0 93770		5000 5450	34 44
	52,0 2 49,0 1		73,9 60,0		4,6	Wind Wor Fuhrländer			Goch-Pfalzdorf Hirzenhain	1/99 8/97							53 58	99770 66681			49 27
800	52,0 2	124	60,0			Nordex		15326 B	Podelzig	12/95	1727300	594082	280	189975	89	184196	86	119578	56 10	00333	47
	52,0 2 52,0 2		60,0 63,5			Nordex Nordex		17111 A 24235 B		10/97 10/95							82 75	126150 140800			56 6 4
	52,0 2 52,0 2		60,0	4,5 4,5	5,6 5,6			25554 C01 25554 C02	Dammfleth	12/95	2097600	706063	332	207704	97	197731	93	145824	68 15	4804	72
800	52,0 2	124	60,0	4,5		Nordex		26826 A	Weener	5/96 12/95							92 94	145090 132150			73 59
	52,0 2 52,0 2		60,0	•		Nordex Nordex			Petershagen-Südf. Hohendodeleben	4/96 2/96							43	86333	407	2019	33
1000	54,02	2290	60,0		5,0	AN BONU		14913 H	Werbig	12/98				177302 199440	83 87		98 68	130156 123540			53 46
	54,0 2 54.0 2		60,0 60,0	•	•	AN BONU		17337 A 28197 F	Wilsickow Bremen	12/98 4/98				2847010 170623	73 74	3251826 187623	83 81	1815369 116059			52 49
1000	54,02	290	70,0	į.		AN BONU	IS	31241 B02	Klein Solschen	12/98	0	685259	299	140698	61	275903	120	140275			56
	54,0 2 54,0 2		50,0 70,0	•		AN BONU AN BONU			Altenbeken-Winter Grevenbroich	5 10/97 12/98		_	274 124	227257 -0	99 0		88 43	109219 104991			38 35
1000	54,02	290	70,0			AN BONU	IS	41517 B02	Grevenbroich	12/98	0	85978	38	-0	0	11530	5	74362	3	32 86	0
	54,0 2 62,0 3		70,0 68,5	•		AN BONU DeWind	S	41517 B03	Grevenbroich Scheid	1/99 11/98		212337 273669	93 91	-0 113041	0 37	5878 -0	2	107580 75254			43 28
	62,03		70,0			DeWind	,	67823 A	Unkenbach	3/99	0	155436	51	-0	0	-0	0	29448	9 12	5988	41
	54,0 2 57,0 2		60,0			HSW HSW	6	23847 A 1 25873 C 1	Westerau Oldersbek	12/97		3423793 938098		1074827 298068		1040540 228444	75 89	619906 190807			50 86
	54,02		55,0			HSW		25899 W01		12/95	2711600	965045	421	268735	117	255259	111	198603	86 24	2448	105
	54,02 54,02					HSW HSW		25899 W02 25899 W03		12/95 12/95						240416 232716	104 101	181852 173605			97 99
	54,0 2 57,0 2					HSW HSW		25899 W04 I		12/95				289345	126	236151	103	183813	80 23	7559	103
	57,0 2 57,0 2		60,0			HSW			Emmelsbüll-Horsb. Emmelsbüll-Horsb.			1206429 1166177	473 457			283372 283372	111 111	253947 253207			122 107
	57,0 2 57,0 2		70,0			HSW HSW		33100 N01 I		11/97	2158400	729686	286	234586	91	218168	85	155855	61 12	1077	47
1000	57,02	552	70,0		:	HSW		33100 N02 I 83530 B S	raderoom Schnaitsee-Edenhut		2169400 385400		290 185		94 47	222144 200848	87 78	156256 93306			47 22
	54,0 2 52,0 2		60,0 60.0	2,1	5,5	Nordex Nordex		01723 C 1 04509 A 3	Wilsdruff (A4) Selben		2059900 1776100		277	141888 206028	61 97	256363 188735	H1 88	133504			44
1000	54,02	290	60,0	•		Nordex		08684 A01 I	Bad Brambach	8/96	956800		144	124915	54	98103	42	121751 63570			43 19
	54,0 2 54,0 2		60,0 60.0	•	•	Nordex Nordex			Bad Brambach Bad Brambach	8/96 8/96	876800 824000		139	129845 111140	56 48	89657 78735	39 34	59431 56035			16
1000	54.02	290	70,0		:	Nordex	6	09337 A I	Bernsdorf/Gersdorf	4/98	3078600	3607245		1238341		1290109	93	593395			18 35
	54,02 54,02		70,0 70.0	•		Nordex Nordex	7	17098 A I 17291 J I		6/97 8/98	10411000 700400	3955864 574062	247 251	1349874 156040	84 68	910625 190478	56 83	762985 113632			58 49
	52,02		60,0			Nordex		18182 B 1			1907300		263	174368	82	140067	65	122929			57
	66,03 66,03		70,0 70,0	6.4 6.4		Enercon Enercon		18556 IO1 B 18556 IO2 B		7/97 7017		1652400 1711920		432600 465540		476580 487140		318300			124
1500	66,03	421	**,*		4,2	Enercon		21109 B H	IH-Georgswerder	8/98	965000	992973	290	280111		304258	88	323820 201942			127 60
	66,03		67,0 68,0		•	Enercon Enercon	7	21734 E C 25541 T B	Dederquart Frunsbüttel-Süd	9/98 3/97		3829483 1285124	160 376	0 372488		1211292 357064	50 104	998265 276382			67 81
1500	66,03	421	66,8			Enercon		25709 AS K	aiser-Wilhelm-Kg	8/97	4727400	1674534	489	539361	157	438028	128	362823	106 33	34322	97
	66,0 3 66,0 3			:		Enercon Enercon			übke-Koog XIV übke-Koog BWP			1856640 1764360				477900 455640		357180 340740			137 132
1500	66,03	421	60,0			Enercon		25924 F30 L	übke-Koog BWP	4/98	3097700	1766700	516	517560	151	456180	133	334560	97 458	3400	133
	66,03 66,03				5,2	Enercon Enercon			übke-Koog BWP xtertal-Goldbeck	3/99	29/2200	1814100 153642	530 45	531780	155	465900 -0	136	360060 -0	105 43 0 153		133 45
	66,03				5,2	Enercon			xtertal-Goldbeck	12/98	0	855325	250	287674	84	218212	63	209037	61 140)402	41
	66,03 66,03				•	Enercon Enercon		33100 Q P 36341 A01 F	aderborn-Dahl rischborn	7/98 12/97	0 1326400	738040 609281	216 178	-0 242008	0 70	369960 146339	108 42	209880 127124			46 27
	66,03		70,0			Enercon		36341 A02 F	rischborn	3/98	1068200	635007	186	249684	72	165707	48	122537	35 97	079	28
	66,03 66,03				4,7	Enercon Enercon		36341 A03 F 37083 A G		4/98 5/98	1058000 861600			229459 183312	67 53	137158 212022	40 61	120818 129890			28 27
	66,03 60,02			٠	٠	Enercon		96199 B S		6/98	0	82291	24	-0	0	-0	0	-0	0 82	291	24
	65,03					Nordtank Tacke		04703 C01 B	/ünnenberg-Helm. ockelwitz	6/97 11/98	2602800 0	454913		316920 -0	0	329940 237336	71	165810 98398			44 35
	65,03					Tacke	7	04703 C02 B		11/98	0	207245	62	-0	0	-0	0	99177	29 108	8068	32
	65,0 3 70,5 3					Tacke Tacke	′	04703 D B 26434 AM H	ooksiel (Wangerla	12/98 12/98	0	3058197 464891	119	0 -0	0	1476740 -0	63 0	715742 300884			37 42
	65,03 65,03					Tacke Tacke		26723 G E				1652834				437767		308683	93 334	962	100
	65,03					Tacke		46399 B01 B	artmannshain ocholt	1/99 8/98	303000	316100 845113	95 255	-0 292964	0 88	-0 256542	0 77	146380 142093			51 46
1500 1500						Tacke Tacke	16	46399 B02 B		8/98	251000	426741	129	212845	64	61734	18	69806	21 82	356	24
1500	65,03	318	0,08			Tacke	10	49762 D Si 91781 A W		9/98 3/98		10092615 504539		0 165499	49	4344067 149944	81 45	2542810 94015			60 28
1650 1650			67,0 67,0		7,2	Vestas Vestas	5	18556 J B	ohlendorf	3/98	1442600	1637105	479	442392	129	479027	140	288345	84 427	341	124
1650	66,03	421	67.0	5.1	6.4	Vestas	J		isum-Lindholm	10/98 12/98		6262018 1024583		21 <i>13</i> 869 -0		1592377 243817	93 71	1052770 374985			84 118
1650	66,03	421	67,0	5.1	6,4	Vestas		25920 D02 R	isum-Lindholm	12/98	0	934206		-0		188288	55	369227			


1999


UNIVERSITÄT STUTTGART

30

Vertikal-Achsen-Windenergie-Konverter:

kurzer, theoretischer Überblick

Definition zur Umströmung des Darrieus-Rotors

Werden folgende, erhebliche Vereinfachungen getroffen:

$\beta = 0$	Profilsehne läuft tangential um
$C_D = 0$	kein Rotorblattwiderstand
$C_L = 2 \pi \sin \alpha$	stationäre Aerodynamik
fD	Diattiata askrajal klainar ala Da

 $f_{AFL} \ll R$ Blatttiefe sehr viel kleiner als Rotor

A ist die bestrichene Windfläche, für den H-Rotor ist das $A = 2 \cdot R \cdot l \ [m^2]$ wobei $l \ [m]$ die Länge des geraden Rotorblattes darstellt. Der genannte Leistungsbeiwert ergibt sich weiter unter der Ännahme, daß $V_{DSC} = V_{FFL}$ (1 - a) ist, mit dem achsialen Induktionsfaktor a zu: $a_{\text{H-Darrieus}} = z \cdot f_{\text{AFL}} \cdot \lambda_{\omega,\text{TIP}} \cdot / \sin \theta / 2 \cdot R_{\text{TIP}}$

so erhält man für den geraden, *H-Darrieus-Rotor* folgenden Leistungsbeiwert:

Für das Drehmoment gilt:

gerade Rotorblätter, H-Rotor

$$C_{P,H-Darrieus} = \pi \cdot \lambda_{\omega,TIP} \cdot \frac{z \cdot f_{AFL}}{R_{TIP}} \cdot \left[\frac{1}{2} - \frac{4}{3\pi} \frac{z \cdot f_{AFL} \cdot \lambda_{\omega,TIP}}{R_{TIP}} + \frac{3}{32} \frac{z^2 \cdot f_{AFL}^2 \cdot \lambda_{\omega,TIP}^2}{R_{TIP}^2} \right]$$

 $Q_{\text{H-Darrieus}} = \rho \cdot \pi \cdot f_{\text{AFL}} \cdot R_{\text{TIP}} \cdot \ell \cdot v_{\text{FFL}}^2 \cdot (1 - a^2) \sin^2 \theta$

mit einem mittleren Drehnoment von:

$$\overline{Q}_{\text{H-Darrieus}} = \rho \cdot \pi \cdot z \cdot f_{\text{AFL}} \cdot R_{\text{TIP}} \cdot \ell \cdot v_{\text{FFL}}^2 \cdot \\ \left[\frac{1}{2} - \frac{4}{3\pi} \frac{z \cdot f_{\text{AFL}} \cdot \lambda_{\omega,\text{TIP}}}{R_{\text{TIP}}} + \frac{3}{32} \frac{z^2 \cdot f_{\text{AFL}}^2 \cdot \lambda_{\omega,\text{TIP}}^2}{R_{\text{TIP}}^2} \right]$$

Damit ergibt sich für den geraden H-Darrieus ein C_P von 0,554 bei einem a_{opt}. von 0.401. Durch Reibungseffekte übertrifft jedoch C_P den Wert von 0.36 nicht.

Kreisförmig gebogener Darrieus - Rotor:

Induktionsfaktor: $a_{K-Darrieus} = z \cdot f_{AFL} \cdot \lambda_{\omega,TIP} \cdot \cos \gamma \sin \theta / R_m$

Der Drehmomentenbeitrag, erzeugt durch eine Scheibe mit der Breite dz (Drehachsrichtung z), beträgt:

$$\frac{1}{d\overline{Q}}/dz = \rho \cdot \pi \cdot z \,\, f_{_{AFL}} \cdot v_{_{FFL}}^2 \cos \gamma \cdot \left[\frac{1}{2} - \frac{8}{3\pi} \cdot \sigma \cdot \lambda_{_{\omega,TIP}} \cdot \cos \gamma + \frac{3}{8} \sigma^2 \,\, \lambda_{_{\omega,TIP}}^2 \,\, \cos^2 \gamma \, \right]$$

wobei $\sigma = z \cdot f_{AFL} / 2 R_m$ werden kann.

als Blattbreitenfunktion oder Dichtefaktor bezeichnet

Der Leistungsbeiwert -Anteil der endlich dünnen Scheibe dz ist:

$$dC_{_{P}}/dz = \frac{4\pi \cdot \sigma \cdot \lambda_{_{\omega,TIP}}}{A_{_{\varphi}}} \cdot R_{_{TIP}} \cdot \cos\gamma \cdot \left[\frac{1}{2} - \frac{8}{3\pi} \cdot \sigma \cdot \lambda_{_{\omega,TIP}} \cdot \cos\gamma + \frac{3}{8}\sigma^2 \ \lambda_{_{\omega,TIP}}^2 \ \cos^2\gamma \right] \\ Der einfache Fall des kreisförmigen Darrieus-Rotors liefert für a_{opt} = \sigma\lambda_{_{\omega,TIP}} = 0,461 einen Leistungsbeiwert von C_{P,max} = 0,536.$$

Leistungsbeiwert von $C_{P,max} = 0,536$.

Die Formeln gelten nur für den reibungsfreien Fall!